Covariance Matrix Estimation under Total Positivity for Portfolio Selection*

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Portfolio Selection with Singular Covariance Matrix

In this paper we use the Moore-Penrose inverse in the case of a close to singular and ill-conditioned, or singular variance-covariance matrix, in the classic Portfolio Selection Problem. In this way the possible singularity of the variance-covariance matrix is tackled in an efficient way so that the various application of the Problem to benefit from the numerical tractability of the Moore-Penro...

متن کامل

On Portfolio Selection: Improved Covariance Matrix Estimation for Swedish Asset Returns

Mean-Variance (MV) theory for portfolio selection is based on assumptions involving parameters that have to be estimated using historical data. Depending on the method of estimation, the estimates will suffer from estimation error and/or specification error, both of which will effect the portfolio optimization in such a way that the resulting optimal portfolio is not the true optimal portfolio....

متن کامل

Portfolio Selection Using Tikhonov Filtering to Estimate the Covariance Matrix

Markowitz’s portfolio selection problem chooses weights for stocks in a portfolio based on a covariance matrix of stock returns. Our study proposes to reduce noise in the estimated covariance matrix using a Tikhonov filter function. In addition, we propose a new strategy to resolve the rank deficiency of the covariance matrix, and a method to choose a Tikhonov parameter which determines a filte...

متن کامل

Improved Estimation of the Covariance Matrix of Stock Returns With an Application to Portfolio Selection

This paper proposes to estimate the covariance matrix of stock returns by an optimally weighted average of two existing estimators: the sample covariance matrix and single-index covariance matrix. This method is generally known as shrinkage, and it is standard in decision theory and in empirical Bayesian statistics. Our shrinkage estimator can be seen as a way to account for extra-market covari...

متن کامل

Estimation of Covariance Matrix

Estimation of population covariance matrices from samples of multivariate data is important. (1) Estimation of principle components and eigenvalues. (2) Construction of linear discriminant functions. (3) Establishing independence and conditional independence. (4) Setting confidence intervals on linear functions. Suppose we observed p dimensional multivariate samples X1, X2, · · · , Xn i.i.d. wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Financial Econometrics

سال: 2020

ISSN: 1479-8409,1479-8417

DOI: 10.1093/jjfinec/nbaa018